-20=-180+2x^2

Simple and best practice solution for -20=-180+2x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -20=-180+2x^2 equation:



-20=-180+2x^2
We move all terms to the left:
-20-(-180+2x^2)=0
We get rid of parentheses
-2x^2+180-20=0
We add all the numbers together, and all the variables
-2x^2+160=0
a = -2; b = 0; c = +160;
Δ = b2-4ac
Δ = 02-4·(-2)·160
Δ = 1280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1280}=\sqrt{256*5}=\sqrt{256}*\sqrt{5}=16\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{5}}{2*-2}=\frac{0-16\sqrt{5}}{-4} =-\frac{16\sqrt{5}}{-4} =-\frac{4\sqrt{5}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{5}}{2*-2}=\frac{0+16\sqrt{5}}{-4} =\frac{16\sqrt{5}}{-4} =\frac{4\sqrt{5}}{-1} $

See similar equations:

| 6p=0.56 | | y^2+64y-1024=0 | | 1/4x+31/2=2(1/2x+3/4 | | 8(x+4)=8(x+12) | | 8(x+4)=8(x+12 | | (1/3)z^2-9=0 | | x^=16x-28 | | 6x+3°=4x+29 | | 6b^2+2b-54=2b | | 22+6x=3x+24 | | 2/5m^2-40=0 | | 2x=X/2+99 | | 3x+1.5x=83.6 | | 5x=10^5 | | 11^6x=2x-13/ | | X=4x-188 | | 1/3z^2=9 | | 1/3z^2-9=0 | | 10000=5x | | 9g^2+5=6 | | 3+5n=3+8n | | 3w^2-5=13 | | 3/11+x=-5/22 | | 0=-1/2n^2-2 | | 3x+6-5x=7 | | 5/10x=84 | | -3+4m^2=22 | | -3+4m^2=0 | | x-5x-10=9+2x=7 | | -(5-5x)+8=-17+2x | | -9t+2=54 | | x16−x34=−1 |

Equations solver categories